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Abstract. The percolation surface was calculated for a cubic lattice where each active site 
is occupied by a cube that only conducts along planes normal to one of the three Cartesian 
directions. The transport properties of the assembly of cubes, found using a resistor network 
approximation, are more adversely affected by the presence of vacant sites than by the 
anisotropy of the different cubes. Studies of the correlation length and conductivity 
exponents indicate that the behaviour of the material is in general three dimensional, 
though systems comprised of voids and cells oriented in one direction have critical 
exponents corresponding to two-dimensional systems. An effective medium treatment gave 
simple analytical results for the percolation surface and effective conductivity that were 
quite accurate in some limits. 

1. Introduction 

Redner and Stanley (1979) introduced anisotropic percolation by occupying bonds in 
different directions with different probabilities. Since then, this problem has been 
extensively studied in two dimensions (Torrie er al 1982, Zhang 1984, da Silva et al 
1985). In the present three-dimensional work anisotropy is introduced in a different, 
physically motivated, manner by occupying sites with elements that cannot bond to 
all nearest neighbours. 

The system studied consists of a cubic lattice with sites located at the lattice points. 
Each active site may be thought of as a cube composed of layers of planes normal to 
one of the three Cartesian axes. Cubes cannot bond (conduct) in the two directions 
normal to the planes and thus connect with at most four neighbours. Sites may also 
be left unoccupied. An equivalent perspective is to regard each site as occupied by 
individual two-dimensional square planes, with no transport normal to the square. 
Thus in the rest of the paper ‘square’ may be substituted for ‘cube’. 

The motivation for the study was to investigate the effect of anisotropy in the 
transport properties of single crystals on the behaviour of polycrystalline materials. 
Planar conductors such as the beta-aluminas are of considerable industrial importance 
(Farrington and Briant 1979). Furthermore, the newly discovered high-temperature 
superconductors also appear to show planar anisotropy (Tozer er al 1987). The cubic 
array discussed in this paper may be considered to be an elementary model for such 
materials, where the cubes correspond to individual grains, and the unoccupied sites 
correspond to impurities and defects in the crystal structure. Testing the possibility 
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that the materials will conduct is analogous to investigating the connectedness of the 
array. 

The physical requirement that some sites be left unoccupied means that the percola- 
tion problem may be classified as an anisotropic bond-site study. Bond-site percolation 
(Frisch and Hammersley 1963, Hammersley and Welch 1980) allows both bonds and 
sites to be occupied independently. This idea was first combined with the concept of 
anisotropic percolation by Guttmann and Whittington (1982). They considered a 
square lattice with a diagonal bond in each square (distorted triangular lattice) where 
separate occupation probabilities were defined for sites and for bonds in each of two 
different directions. Site and bond percolation on square and triangular lattices are 
special cases of this general system, as indeed is one-dimensional percolation. 

In the present system sites are occupied with one probability, but different orienta- 
tions of the cubes occur with different frequencies corresponding to the probabilities 
of forming bonds in different directions. This model includes two-dimensional site 
percolation as a limiting case, and consequently is analogous to the two-dimensional 
work of Guttmann and Whittington (1982) which encompassed a one-dimensional 
problem. 

The focus of Guttmann and Whittington’s work was to show that the critical 
exponents for site, bond and bond-site percolation are all the same, except for the 
choice of parameters corresponding to the one-dimensional limit. This conclusion is 
consistent with the results of Nakanishi et a/  (1981) who showed that anisotropic 
percolation on the two-dimensional square lattice was in the same universality class 
as isotropic percolation. The problem considered here was similarly found to be in 
the same class as three-dimensional bond and site percolation. 

We note parenthetically that systems of one-dimensional conductors in a two- 
dimensional environment show a markedly different behaviour from that of two- 
dimensional conductors in a three-dimensional system as studied here. The percolation 
threshold for one-dimensional conductors is trivial, with all conduction paths eventually 
trapped in spirals (Johnson 1987). For the present problem, however, there is a well 
defined percolation surface. 

The onset of percolation as a function of the percentage of cubes with each 
orientation defines the percolation surface, and this surface is discussed 0 2. The 
correlation length exponent was calculated for one of the curves that serves to define 
the surface. As discussed in 9 3, the exponent agrees with the three-dimensional bond 
or site percolation exponent except at a singular point. The conductivity exponent for 
the same limiting curve is found in $ 4  and the behaviour at the singular point is 
analysed in more detail. An effective-medium theory analysis of the system is given 
in $ 5 ,  while $ 6 is devoted to the conclusions from the work. 

2. The percolation surface 

Percolation was sought in the z direction as a function of the fraction of occupied 
sites and the probability that an active site would be occupied by a cube that could 
bond in the yz, xz or xy planes (referred to by their normals as x, y and z cubes 
respectively). Note that because the individual cells are anisotropic, the direction in 
which percolation is being sought must be specified. The percolation surface is 
calculated using Stauffer’s (1985) algorithm. Durand (1989) discusses the algorithm 
in the context of the current problem. 



Percolation and transport in anisotropic cells 323 

2.1. Calculation of the percolation surface 

The fraction of voids at incipient percolation in the z direction was found for a given 
ratio of the three types of cubes (i.e. a given x : y :  z ratio). However, if the fraction 
of z cubes is too large, there may be no percolation even in the absence of voids. A 
somewhat different percolation problem arises in this case, namely to find the critical 
fraction of z cubes for a given x : y ratio. The methodology for the two problems is 
very similar. 

The estimate of the critical fraction for each configuration was found to an accuracy 
of rt0.015. In all cases, the system size was at least 50 (i.e. 125 000 cubes and voids 
were used) and periodic boundary conditions were imposed in all three directions to 
mitigate finite-size effects. Averaging results for many (typically 100) configurations 
gave the critical fractions to an accuracy of k0.003 at 95%. The error limits are based 
on the assumption that there are no systematic errors such as finite-size effects. 

2.2. The features of the percolation surface 

The percolation surface (figure 1) was established by considering four limiting cases, 
namely systems with no z cubes, equal amounts of x and y cubes, no y cubes, and 
no voids (i.e. all sites are active). Interpolating between the four curves, labelled as 
A, B, C and D on figure 1, gives the percolation surface. Curves A, B and C are shown 
separately as figures 2( a ) ,  2( b )  and 2( c) respectively. The overall surface is in essence 
a phase diagram, and shows the critical void fraction on the vertical axis as a function 
of the fractions of x, y and z cubes. Phase diagrams with three components are 
discussed in general terms below before the features of each of the four curves are 
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Figure 1. Schematic of the percolation surface for the system of planar conductors. The 
vertex labelled x corresponds to all conducting cubes having normal in the x direction. 
The vertical axis gives the void fraction at incipient percolation. 
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Figure 2. Percolation curves for: ( a )  a system of 
voids, and cubes with normals in the x and y direc- 
tions (curve A in figure 1); ( b )  a system of equal 
amounts of cubes with planes normal to the x and 
y directions (curve B in figure 1) ;  (c )  a system where 
no cube has its normals in the y direction (curve C 
in figure l ) ,  this curve being identical to the case 
where no cube has its normal in the x direction. In 
each case the curve interpolates between the data 
points. 

examined in detail. Those readers conversant with the nature of such diagrams may 
prefer to skip to the description of curve A in 0 2.2.1. 

Phase diagrams with three components are typically shown as equilateral triangles, 
with any ratio of the three components corresponding to a unique point in the triangle. 
The three vertices correspond to systems containing only one of the components. The 
fraction of, for example, z cubes corresponding to any point on the triangular diagram 
is found by drawing a line from the z vertex through the point to the opposite side of 
the triangle. The required fraction is the portion of the line from the point to the side 
of the triangle. The sum of the fractions of x, y ,  and z cubes adds to unity. 

The vertical axis in figure 1 denotes the critical void fraction; points under the 
surface correspond to systems that will conduct. For any point in the diagram, the 
fraction of the total number of cubes that have normals in a given direction is found 
by multiplying the fraction of cubes with normals in that direction (as read from the 
phase diagram) by (1 - vf), where vf is the void fraction. 

2.2.1. No cubes having planes normal to the z direction (figure 2 ( a ) ) .  Both x and y 
cubes conduct in the z direction and so, from a transport perspective, the two types 
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of cube are in essence equivalent when present in approximately equal amounts. 
Consequently, the percolation line approaches the axis of equal amounts of x and y 
cubes with zero slope. When the fraction of either type of cube is greater than about 
0.75, two-dimensional effects start to manifest themselves. The case of purely x or 
purely y cubes (and voids) is a strictly two-dimensional problem. 

Consider, for example, the case where all active sites are occupied by cubes with 
normals in the x direction. Bonds within the assembly are confined to yz planes. A 
system of size L x L x L is effectively L independent two-dimensional systems of size 
L x  L. Thus, in this limit, the problem of the behaviour of an assembly of planar 
conductors reduces to the two-dimensional site percolation problem. 

Middlemiss et a1 (1980) found the critical void fraction of the site percolation 
problem to be 0.406 f 0.003 by extrapolating data from systems of up to 200 x 200 to 
infinite system size. More recently, Ziff and Sapoval (1986) reported a value of 
0.407 255 f 0.000 002. The figure found in this work in the three-dimensional simula- 
tions of 50 x 50 x 50 planar conductors with all occupied cubes having normal in the 
x direction is considerably larger than this, namely 0.465. When the true two- 
dimensional problem was studied using a modified version of the three-dimensional 
code and a system size of 50 x 50, the threshold was found to be 0.406 f 0,003, which 
is consistent with literature values. 

The two-dimensional and three-dimensional results of the present work are not 
inconsistent. The disparity arises because, as noted above, in the limit of only one 
type of cube, the 50 x 50 x 50 three-dimensional system is really 50 two-dimensional 
systems of size 50 x 50. Once any of the 50 systems percolates, the three-dimensional 
system is considered to percolate and consequently the void fraction that is reported 
as critical is actually the maximum void fraction of 50 two-dimensional systems 
averaged over many clusters of 50 systems. In the appendix, the mean of the maximum 
threshold for L systems of size L X  L is compared with simulation results for systems 
of size L x  L X  L, and the two are found to be in reasonable agreement. Implicitly, 
different definitions of percolation are being used for the two-dimensional and three- 
dimensional work; this point is explored further in 0 3.4. 

2.2.2. Equal fractions of x and y cubes ( j g u r e  2(  b ) ) .  In contrast to curve A, some sites 
for curve B are occupied by cubes with normals in the z direction, and these tend to 
inhibit conduction. Indeed, as the fraction of z cubes becomes very large (as the z 
vertex is approached in figure l ) ,  conduction becomes increasingly difficult. The 
permitted void fraction falls to zero when 96% of the grains have normals in the z 
direction. 

It is surprising that conduction in the z direction is possible when as little as 4% 
of the cells can conduct along this axis. However, transport in the xy plane is facilitated 
by all three types of cubes and thus in the limit of no voids, connections in each xy 
plane are guaranteed. Conduction in the z direction is thus seen to be dependent on 
having only sufficient x and y cubes to ensure alignment of grains that conduct in the 
z direction in different layers, and consequently the fraction of such cubes at the 
threshold can be very small. 

2.2.3. No cubes having planes normal to the y direction (figure 2 ( c ) ) .  The discussion 
pertaining to curve B, where the fraction of cubes with normals in the x and y directions 
were constrained to be equal, is germane to the present case where there are no y 
cubes. However, differences between the two curves arise because the behaviour of 
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combinations of x and y cubes is not always equivalent to the action of an equal 
fraction of just x or just y cubes. Systems of cubes of different type can contribute to 
trapping where systems of only one type of cube cannot. Consequently, the permitted 
void fraction for a given (x + y )  : z ratio for curve B, where there is a mixture of cubes, 
is lower than the corresponding x :  z ratio for curve C (see table 1). The difference in 
critical void fraction at zero fraction of z cubes is an artefact of the singular nature 
of this limit for curve D (see the earlier discussion of this point in 0 2.2.1). 

Table 1. Comparison of curves B and C in figure 1. 

Void fraction 
Fraction of 
z cubes Curve B Curve c 

0.0 0.43 1 0.464 
0.20 0.406 0.423 
0.50 0.399 0.419 

2.2.4. No voids present in the system (curve D in jigure 1 ). The critical fraction of z 
cubes is reported as a function of the x : y  ratio. As discussed above, either x or y 
cubes can provide a path from one xy plane to an adjacent layer while conduction 
within a given xy plane is through a network of z cubes. The fraction of x or y cubes 
on curve D is small and so each cube may be considered to be acting independently 
and thus the two types of cube are equivalent. This independence contrasts sharply 
with curve A where, in the limit of a preponderance of y or x cubes, the presence of 
even small amounts of a second type of cube added a three-dimensional nature to the 
transport and so the different types of cells were not equivalent. One manifestation 
of the similarity of behaviour of x and y cubes for curve D is the invariance of the 
critical fraction of z cubes with respect to the y : x ratio. The threshold ranges from 
0.959*0.003 at y : x  = 1, to 0.962*0.003 at y : x = O ,  and because this variation is 
insignificant, no separate figure is shown for this curve. 

3. The correlation length exponent 

The universality hypothesis (see e.g. Fisher 1971) justifies the use of critical exponents 
to decribe the behaviour of percolating systems in the vicinity of the percolation 
threshold. Systems in the same universality class must have the same critical exponents, 
but the class to which a given system belongs should be independent of details such 
as the type of lattice used in the simulations, and whether site or bond percolation is 
being investigated. In the present work, the conductivity and correlation length 
exponents corresponding to the limit of no z cubes (curve A in figure 1) are found. 
The exponents are compared with those found for more conventional percolation 
problems. 

The scaling relations used to find the critical exponents must explicitly include size 
dependence. The correlation length exponent, v, was found from the relation 

UCC L-1’” (1) 
where cr is the standard deviation of independent estimates of the percolation threshold 
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(Levinshtein et a1 1976). Thus, the exponent was calculated by finding the percolation 
threshold for a number of independent configurations at each of a range of system 
sizes. The individual thresholds were found to a precision of ~t0.001 at 95% confidence. 
The smallest standard deviation found was 0.007, so that the calculated standard 
deviation was not inflated by random fluctuations in the individual thresholds. A 
weighted least-squares analysis was used to find the exponent. Following Bevington 
(1969), the weighting an individual data point received was chosen to be proportional 
to the reciprocal of the error associated with that point. 

The uncertainty in the standard deviation, A,, was estimated to be U/&, where 
n is the number of estimates of the threshold from which the standard deviation was 
calculated. Levinshtein et a1 (1976) showed that this simple expression for AV is a 
good approximation to the exact expression. In the present work, A,, was kept constant 
for different system sizes. The error in the logarithm of the standard deviation, however, 
is A,/ U. Thus, counterintuitively, larger systems, which have small standard deviations, 
contribute more to the inaccuracy of the slopes of the least-squares lines than results 
for smaller systems. 

The procedure for finding the critical exponents was 'validated by finding the 
exponent for the truly two-dimensional site percolation problem. The standard devi- 
ations of values of the percolation threshold corresponding to independent configur- 
ations were found for a range of different system sizes. The results are shown as the 
uppermost plot on figure 3. The weighted least-squares line based on the four largest 

- 2  i 

I 
-6 I I I I I I I  

2 3 4 5 6 

In 1 

Figure 3. Scaling plots of standard deviation against system size for a system where all 
conducting cubes have normals in the x direction. The uppermost plot is based on 
two-dimensional simulations and yields U =  1.3k0.16. The middle plot is based on the 
data from the three-dimensional code and gives U = 1.25 * 0.1 1. The lowest plot corresponds 
to data for a three-dimensional system predicted from the two-dimensional data in the top 
curve (see appendix). The slope of this plot gives U = 1.23 i 0 . 2 .  
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systems (75, 100, 128 and 200) gives an exponent of v = 1.30* 0.16 which is consistent 
with the accepted result of $. 

As noted earlier, the three-dimensional system where all conducting cubes have 
their normal in the x direction is really a composite of many two-dimensional systems. 
Plotting the data for this system (middle curve in figure 3) and attributing a physical 
significance to the slope is of questionable validity. For completeness, the three- 
dimensional result is reported in table 2 below, though the more appropriate figure is 
perhaps v = 1.3OkO.16 found for truly two-dimensional systems. 

The investigation of the correlation length exponent for other three-dimensional 
systems was restricted to cases where there were no cubes with normal in the z direction. 
Systems of size 10, 20, 30 and 50 were used except for the cases where all conducting 
cubes had normals in the x direction, where data for a system of size 75 were also 
collected. The exponents reported in table 2 are based on a weighted least-squares fit 
through all system sizes except the smallest. The data for the case of an equal fraction 
of cubes having normals in the x and y directions are plotted in figure 4. 

The value of the exponent v in three dimensions was found to be 0.89*0.01 by 
Heermann and Stauffer (1981) for random site percolation on a cubic lattice. Gaunt 

Table 2. Correlation length exponents. 

x fraction 0.5 0.6 0.75 0.9 1.0 
y fraction 0.5 0.4 0.25 0.1 0.0 
Exponent, Y 0.88 *0.11 0.84 * 0.10 0.87 * 0.08 0.89 * 0.09 1.2510.11 

t 

-6 6 
2 3 4 

In L 
Figure 4. Scaling plot of standard deviation against system size for a system where an 
equal number of grains have normals in the x and y directions. The slope is based on 
data for the three largest systems and corresponds to an exponent v = 0.88 * 0.1 1. 
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et a1 (1981) report a value of 0.86 * 0.06 for the same exponent. The values calculated 
here are consistent with both of these results, except for a fraction of x cubes greater 
than 0.9. Consequently, the system of planar conductors, which may be viewed as a 
special bond-site percolation problem, is in the same universality class as traditional 
three-dimensional site or bond percolation problems. This result is consistent with the 
two-dimensional bond-site percolation studies of Guttmann and Whittington (1982). 

4. The conductivity exponent 

For any system under the percolation surface of figure 1, transport is possible. Viewing 
the centre of the cubes as nodes and representing viable paths between adjacent active 
sites by links allows the assembly of cubes to be approximated by a resistor network. 
Application of periodic boundary conditions and solution of Kirchoff’s current laws 
yields the conductivity of the system. 

For an infinite system, the conductivity Z follows the scaling law 

a ( P c  - P ) ‘  (2) 

where p is the probability of a site being vacant, pc  is the critical void fraction for a 
truly infinite system, and t is the conductivity exponent. The scaling relation for a 
finite-sized system is (Green 1971) 

z = L - ‘ / ” F ( ( p , - p ) L ’ / ” )  (3)  

where pc  is the critical void fraction for a truly infinite system and F is a scaling 
function. The scaling function is unity if the argument is zero. Consequently the 
exponent t / v  may be found by performing simulations for a range of system sizes 
where the void fraction, p ,  is chosen to be the critical void fraction for the infinite 
system. The infinite-system void fraction may be found by extrapolating the results 
of finite-sized systems. An alternative approach, which was adopted in the present 
study, is to perform simulations with the void fraction p set to the critical void fraction 
corresponding to the system size, p , ( L ) .  Use of the scaling relation pc  -pc( L )  OC L-’I” 
indicates that with this choice of p, the term in square brackets in equation (3)  is 
constant, and in this limit the scaling law reduces to a simple relation between L 
and Z. 

The conductivity was calculated for the case where the fraction of cubes with 
normal in the z direction was zero. For each ratio of y : x cubes the mean conductivity 
was found by calculating the conductivity for a number of independent configurations. 
The procedure was repeated for a range of different system sizes, with the void fraction 
p set to the critical void fraction corresponding to that system size, p c ( L ) .  The values 
of p c ( L )  had been found to an accuracy of 10.001 during the investigation of the 
correlation length exponent. Of course, at any given system size, not all configurations 
percolated. The flux through a percolating system (and hence the conductivity) was 
found by solving Kirchoff’s laws for the system by using the ITPACK sparse matrix 
solver (Kincaid el a1 1982). The conductivity for each system size was averaged until 
the error was less than 5% at 95% confidence, and the result was multiplied by the 
fraction of non-percolating configurations so that the reported conductivity was 
averaged over all configurations. 
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The slopes of the scaling plots were found using a weighted least-squares analysis 
for systems of size 15, 20 and 30. The results are listed in table 3. The exponent for 
the system with y = O S  changed by less than 2% when the system of size 10 was 
included, and so the regression is stable. Figures 5 and 6 are the plots for the fraction 
of cubes with normals in the y direction being 0.5 and 1.0 respectively. 

Derrida et a1 (1983) report a value of 2.2rt0.1 for t / v  for a three-dimensional 
system of resistors and insulators while Pandey and Stauffer’s (1983) result for the 
problem of diffusion on a three-dimensional simple cubic lattice was 2.3 f 0.2. Thus, 
as for the correlation length exponent, the system behaves in a three-dimensional 
fashion until the fraction of cubes with normal in the x direction is greater than 0.9. 

The third column in table 3 corresponds to the case where all the cubes have their 
normal in the x direction, but for each system the void fraction was set equal to the 
two-dimensional infinite-system result (0.407 25) rather than using the size-dependent 

Table 3. Exponent t / v  for different systems. 

Fraction of x cubes 0.5 0.9 1.0-CO 
Exponent, i/ v 2.31 kO.10 2.11 10.10 0.94 1 0.06 

-5 r 

2 3 4 2 3 4 

In L In L 

Figure 5. Conductivity as a function of system size 
for a system with no cubes with normals in the z 
direction, and equal fraction of cubes having normals 
in the x and y directions. The slope yields a value 
of 1/w=2.3*0.1.  

Figure 6. Plot of conductivity against system size for 
a system where all cubes are normal to the x direc- 
tion. The void fraction was set to the system size- 
dependent threshold p,(L) for the lower curve and 
yields t /  v = 2.1 f 0.1. It is impossible to ascribe phy- 
sical significance to this result (see text). For the 
upper plot the void fraction was set to the two- 
dimensional infinite-system result (0.407 25) giving 
t/ Y = 0.94i 0.08. 
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thresholds. As noted earlier, the case of all cubes having normals in the x direction 
is a two-dimensional problem and the system of size L x L x L is really L systems of 
size L x L. The size-dependent thresholds found from the three-dimensional simula- 
tions p c ( L )  do not correspond to half of the L two-dimensional systems percolating. 
Consequently the use of size-dependent thresholds pc( L )  in equation (3) are inappropri- 
ate. This point is further discussed by Durand (1989). Setting the void fraction to the 
two-dimensional infinite-system result in the three-dimensional simulations yielded an 
exponent ( t /  v )  of 0.94* 0.06 which is consistent with the two-dimensional result of 
Lobb and Frank, (1984) of 0.973:::;::. The change in the exponent from a three- 
dimensional value to a two-dimensional result in the singular limit of the fraction of 
cubes with normal in the x direction being 1.0 is consistent with the results presented 
above for the correlation length exponent, and also with the findings of Guttmann and 
Wittington (1982) discussed earlier. 

5. Effective medium theory (EMT) approximation 

A simple analytical analysis of planar conductors based on a modification of effective 
medium theory (EMT) (for a review, see Landauer (1978)) may be used to find the 
percolation surface. The approximate surface is compared with the simulation (exact) 
results to provide insight into the particle-particle interactions that must be incorpor- 
ated to represent the behaviour of the system. 

EMT gives an implicit expression for the effective conductivity (k,) of a multiphase 
material as a function of the volume fractions ($i) and conductivities (k i )  of each of 
the phases. The present system of anisotropic cells may be considered to be a material 
composed of four different phases, namely voids and cubes with normals in the x, y 
and z directions. Cubes with normals in the x and y directions conduct in the z 
direction, and as cells are considered to act in isolation in the effective medium theory 
approach, the two types of cube are equivalent. Each of these phases is assigned a 
conductivity k which is the product of the two-dimensional (planar) conductivity and 
the number of planes per unit length in a cube. The conductivity of cubes with normals 
in the z direction and voids is zero. Denoting the fraction of cubes with normals in 
the x direction by x( 1 - uf) where vf is the fraction of voids, the EMT equation for the 
effective conductivity, k,, is 

4 1 -  Uf)( 3) k+2k, + y( l  - Uf)( -) + z(  1 - Uf)( 2) + Uf( 2) = 0. 

The last equation may be rearranged to yield 

k, 1 -a  Uf+ z (  1 - Of) 

k -1+2a ( x + y ) ( l -  Uf) * 

where a =  --- 

(4) 

( 5 )  

At the threshold, the effective conductivity k ,  falls to zero and so equation ( 5 )  may 
be used to find the critical void fraction, 

uf(criticat) = (1  - 2 ~ ) / 2 ( 1  -z )*  ( 6 )  
The percolation surface given by equation ( 6 )  is shown as figure 7, which should 

be compared with the simulation results presented in figure 1. When the fraction of 
cubes with normal in the z direction is zero, (curve A in figure l ) ,  the critical void 
fraction is f , which compares well with the simulation result of approximately 0.43. 
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f 4 

0.4 
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0 

1. 
Figure 7. Schematic of the percolation surface predicted effective medium theory. 

The result for the critical fraction of cubes with normal in the z direction (curve D in 
figure 1) is 0.5 which is considerably less than the simulation result of 0.96. The EMT 

approximation for curve D in figure 1 is unsatisfactory because no distinction is drawn 
between cubes with normals in the z direction and voids. Cells that are void do not 
conduct in any direction, whereas cells that are normal to the z direction facilitate 
transport by providing paths in the xy plane. 

1.0 1 

0.6 
A! 

0.4 

0.2 
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Figure 8. Comparison of effective medium theory predictions (full diamonds) and resistor 
network calculations (open squares) for the conductivity of a system with equal amounts 
of cubes with normals in the three Cartesian directions. The conductivity of the assembly 
of cubes is normalised by the effective conductivity of one cube (see text). The lines 
interpolate between the data points. 
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The EMT and resistor network approaches can also be compared by computing 
effective conductivities. A sample of material containing equal amounts of the three 
types of cube with varying amounts of voids was studied. Such a composition might 
arise from a manufacturing process where a totally random mixture of the different 
cubes is obtained but some control over the void fraction is possible. The resistor 
network calculations were based on a system of 27 000 cubes. The effective conductivity 
for the zero voids case was found to be 0.91 f 4% of the conductivity k of the individual 
cubes and the threshold void fraction was 0.401 rtO.003. The simulation and EMT 

results are compared in figure 8. The failure of the approximate theory is again due 
to ignoring the difference between cubes with normals in the z direction and voids. 

6. Conclusions 

The percolation surface was found for an assembly of voids and planar conducting 
cubes with normals in any of the three Cartesian directions. The simulation results 
emphasise that the extreme anisotropy of the individual conductor has little effect on 
transport through the system. The effective conductivity with three types of cubes 
present, but zero void fraction, is 90% of the value for conduction in the preferred 
direction, however the role of voids is pronounced. The implication of these results 
is that effort should be expended to develop manufacturing techniques that eliminate 
voids rather than seeking to align individual conductors. 

Studies of the correlation length and conductivity exponents for systems of planar 
conductors where no cubes have normals in the conduction direction indicated that 
the behaviour of the material was in general three dimensional. Systems of voids and 
only one type of cube were found to have critical exponents corresponding to two- 
dimensional systems. 

An effective medium treatment of the problem of planar conductors gave simple 
analytic results for the percolation surface and the effective conductivity. The theory 
does not distinguish between cubes with normals in the x or y directions or between 
voids and cubes with normals in the z direction. Such a simplification does not account 
for conduction in the xy plane by z cubes and hence gives rise to increasingly poor 
predictions as the ratio of cubes with normals in the conduction direction to voids 
increases. 
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Appendix. Behaviour when all.occupied cubes have normals in the y direction 

The case of all active sites being occupied by cubes with normals in the y direction 
(or the x direction) is a truly two-dimensional problem. The data for the three- 
dimensional simulations of this system have been interpreted by assuming that a 
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three-dimensional system of size L x  L x  L is really L independent systems of size 
L x L. This was interpreted as meaning that once any of the two-dimensional systems 
had percolated then the three-dimensional system had also percolated. The critical 
void fraction that was reported for any configuration of the system of size L x L x L 
was then the largest void fraction of any of the L independent systems. The validity 
of this explanation of the difference between the results for simulation of two- 
dimensional site percolation using a three-dimensional or two-dimensional code may 
be checked by finding the mean of the maximum threshold of L systems of size L x L 
and comparing with those found in the three-dimensional simulations. The individual 
estimates of the percolation threshold from the two-dimensional systems of size L x L 
were found to be distributed normally and so the mean of the maxima f i  may be 
found from the expression 

= E ( x )  

where m, the value for the mean of the distribution of the samples of size L x  L, will 
be taken to be the result for the mean percolation threshold from the true two- 
dimensional simulations. Similarly the standard deviation, U, is the dispersion of 
thresholds for many independent two-dimensional configurations. The standard devi- 
ation of the maxima, vm, may be found from 

U:= E(x’) - ( f i ) * .  (A21 
Table 4 below compares the two-dimensional values for the mean threshold and the 
dispersion of the values of the critical void fraction from different configurations with 
three-dimensional results. 

Table 4. Comparison of the two-dimensional and quasi-two-dimensional results. 

Three dimensions 

System Two dimensions Predicted by (AI)  and (A2) Simulations in 3D 
size 
L m k0.003 U f i  0, m U 

20 0.4048 0.050 08 0.5174 0.0233 0.5060 0.028 45 
50 0.4059 0.024 89 0.4619 0.0116 0.4645 0.012 98 
75 0.4064 0.01757 0.4486 0.0078 0.4543 0.010 14 

The predicted and actual three-dimensional values below agree to the second 
decimal place. The data for the standard deviations are plotted in figure 3, where the 
uppermost curve corresponds to the two-dimensional calculations, the squares denote 
the predicted data, and the middle curve with upward pointing triangles is the result 
of the three-dimensional simulations at y = 1.0. 

The behaviour of the system with only one type of cube and voids is two 
dimensional, as verified by the agreement between the predictions and the data above 
and as given by the ratio of the correlation length and conductivity critical exponents. 
Consequently, the percolation threshold for the system should be the two-dimensional 
result. 
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In the limit of large system size, the three-dimensional percolation threshold might 
be expected to yield the two-dimensional result. However, there is no guarantee that 
this will be the case. Consider the scaling function for the percolation probability 
(Fisher 1971) 

P = L-P’”F( (p , -p )L’ ’” )  (‘43) 
where /3 is the critical exponent for the percolation probability P. Conditions under 
which p c - p  approaches zero as L increases are sought because then the three- 
dimensional result, p, converges on the two-dimensional infinite-system result. The 
form of F ( z )  is unknown, but if a power law dependence z4 is postulated, it is clear 
that not all values of q will ensure the desired convergence or, more generally, there 
is no guarantee that extrapolating the three-dimensional results for the percolation 
threshold to infinite system size will yield the two-dimensional value. Indeed, plots 
of the percolation threshold against either the reciprocal of system size, or system size 
raised to -1/ v, gave infinite-system results inconsistent with the correct value. 
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